Assessment of computer-aided image analysis devices: Experience gained from CAD in radiology

Berkman Sahiner, PhD
USFDA/CDRH/OSEL
Division of Imaging and Applied Mathematics
OUTLINE

• What are CAD devices?
 – CADe
 – CADx

• Types of CAD assessment
 – Standalone
 – With clinicians
 – Sequential
 – Concurrent
 – Interactive

• Datasets

• Reference standard

• Scoring / Labeling

• Performance measures
 – Sensitivity / specificity
 – Area under the ROC curve

• Summary
WHAT ARE CAD DEVICES?

• Computer-aided detection (CADe) and computer-aided diagnosis (CADx)
CADe DEVICE IN RADIOLOGY

• A computerized system that
 – identifies portions of an image in order to reveal abnormalities during interpretation of patient radiology images by the clinician
 – Detection of breast cancer on mammograms
 – Detection of lung nodules on thoracic CT images

• Commercial devices have been around since 1998
DETECTION OF CENTROBLASTS FOR FOLLICULAR LYMPHOMA GRADING

Reference standard by five expert hematopathologists

CADx DEVICE IN RADIOLOGY

• A computerized system that may
 – provide an assessment of disease
 – specify disease type
 – specify severity, stage, or intervention recommended

for the clinician, based on radiology images
HER2 Assessment: computer-aided

ROI 1/500

The graph depicts computer score of slides and where the ROI viewed lays. Slides of the same score tend to group, however, the score is based on a pathologist score and as such, is not always accurate.
COMPUTER TRIAGE DEVICE

- Intended to reduce or eliminate any aspect of clinical care provided by a clinician
 - e.g., the output indicates that the patient is normal and does not require clinician’s interpretation

- Cytological image analysis
 - Computer-assisted pap smear analysis
CAD SYSTEM ASSESSMENT

• Measure the performance of your system
 – Informs your peers, users, regulators, scientific community, and yourself

• If you can’t assess it, you will not know how to improve it
TYPES OF ASSESSMENT

• Standalone
 – Evaluate the performance of the computer system only

• The effect on clinicians
 – In a controlled environment:
 – Laboratory observer study
 – In practical, daily use
 – Clinical use study
BOTH STANDALONE ASSESSMENT AND EFFECT ON CLINICIANS ARE IMPORTANT

- Why is standalone performance by itself inadequate?
 - Not all TP and FP marks are equal

CAD1: Detect CAD1: Detect CAD1: Miss
CAD2: Miss CAD2: Miss CAD2: Detect
EFFECT OF CAD ON CLINICIANS

• Differences between laboratory observer study and clinical use study
 – Difference in mindset
 – Availability of other clinical data and images
 – Prevalence
 – Case difficulty spectrum
EFFECT OF CAD ON CLINICIANS

• Clinical use studies are
 – Ideally representative of the true performance
 – Difficult to conduct, esp. before dissemination
 – Premature before a CAD device finds its niche
 – Costly

• Earlier phase
 – Laboratory observer study

• Advanced phase
 – Clinical use study
INTERPRETATION PARADIGMS

- **Sequential**
 - Clinician interprets first, followed by CAD results or prompts

- **Concurrent**
 - CAD results are displayed when the clinician starts interpretation

- **Interactive**
 - CAD results are displayed only for cases or locations indicated by clinician
SEQUENTIAL INTERPRETATION WITH CAD

Name: 0159
Registration Number: 159
Case Number: 159
Exam Date: 20021011
Nodule Number: 1
Add Nodule
Clear ROI
Disable ROI
Nodule Numbers
Hide ROI Boxes
Nodule Navigation
Previous Nodule
GOTO Nodule
Next Nodule
Nodule Information
Check if necessary:
- Non-Nodule
- < 3mm Nodule
- Nodule Not Seen
Likelihood of Being a True Nodule (%)
0 10 20 30 40 50 60 70 80 90 100%
Likelihood of Malignancy (%)
0 10 20 30 40 50 60 70 80 90 100%
Nodule Subtlety (5 = Most Subtle)
- 1
- 2
- 3
- 4
- 5
User Detected:
- Yes
- No
CAD Detection Coincides:
Additional Comments:
Viewing image 219 of 241 - p0159_20021011_s2_219.dcm
TEST DATASET

• Must be independent of the training data set used at any stage of development

• Should include the range of abnormalities seen in practice desired for CAD assistance

• Should include a set of cases free of the disease of interest

• Should be large enough for adequate statistical power to demonstrate study objectives
ENRICHMENT

• Low prevalence disease
 – Enhance with cases containing disease
 – Will not affect sensitivity, specificity, area under the ROC curve
 – In an observer study, may affect the clinician’s behavior
SPECTRUM OF DIFFICULTY

• Spectrum of difficulty for test cases versus spectrum of difficulty for true population:
 – If different, test results may be biased

• Bias may be acceptable if
 – Comparing two modalities
 – e.g., clinicians’ performance with and without CAD
 – Both modalities are affected similarly by spectrum bias
STRESS TEST

• Study differences between competing modalities using cases selected to challenge those differences

• Example in CADe
 – Exclude obvious cases because they will be detected both with and without CAD
REFERENCE STANDARD

• Ideally, independent of the modality being studied

• Example:
 – Mammography CAD
 – Cancer cases: Biopsy
 – Normal cases: 2-yr follow-up or biopsy

• Sometimes, this is not possible
 – Lung nodule detection on thoracic CT scans
 – Pulmonary embolism detection on CT
REFERENCE STANDARD

• CADx
 – Type of disease
 – Diseased/non-diseased

• CADe
 – Location/extent of disease
 – Variability may exist even when using independent source to establish the reference standard
 – Important to document
SCORING / LABELING

• Correspondence between CAD output (or study clinician’s interpretation) and the ground truth

• Scoring (labeling) for CADe
 – Rules for declaring a mark (by a clinician or CAD) as a true-positive or false-positive
SCORING

• By a human

• Automated:
 – Compare computer (or clinician) mark to reference standard mark using an automated rule
 – Overlap area divided by ground truth area
 – Overlap area divided by union area
 – Distance of centroids
PERFORMANCE MEASURES: STANDALONE CAD

- Consider a CAD system intended to classify cases as negative or positive

- Such CAD systems often include a classifier which provides an ordinal output
 - Decision variable

- Intuitive analysis method:
 - Threshold classifier output, compute sensitivity and specificity
SENSITIVITY AND SPECIFICITY

Sensitivity = \frac{\text{Number of cases correctly called positive}}{\text{Total number of positive cases}}

Specificity = \frac{\text{Number of cases correctly called negative}}{\text{Total number of negative cases}}
WHO HAS THE BETTER CAD SYSTEM?

• Two CAD systems A and B

 • A: Sensitivity = 95%, Specificity = 60%

 • B: Sensitivity = 75%, Specificity = 80%
THRESHOLDING

Decision Variable

Relative Frequency

Positive

Negative

TP

TN

FP

DECISION THRESHOLD
THRESHOLDING

Decision Variable

Relative Frequency

Positive

Negative

TN

FP

TP
RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE
ROC ANALYSIS

• Evaluation of the performance of a diagnostic system
 – Sensitivity as a function of (1-specificity) as the decision threshold varies
 – TPF vs. FPF
WHO HAS THE BETTER CAD?

A: Sensitivity = 95%
 Specificity = 60%

B: Sensitivity = 75%
 Specificity = 80%
PERFORMANCE MEASURE

• **Area under the curve (AUC)**
 – Average sensitivity over all specificities
 – A measure of the separation between positives and negatives
 – Entirely avoids the use of thresholds
PERFORMANCE MEASURES: OBSERVER STUDY

• Theoretical model for binary decision:
 – Rank the case for likelihood of positive (diseased)
 – Decide if the rating is high enough to call the case positive

• When this model applies
 – All the more reason to avoid thresholds in observer performance studies
THRESHOLDS VARY!
SENSITIVITY-SPECIFICITY VARY!

• Clinician to clinician (inter-reader)

• Same clinician interpreting the same case twice (intra-reader)

• In time:
 – e.g., with availability of treatments
Elmore et al. investigated the inter-radiologist variability in mammogram interpretation:

- 150 mammograms selected using stratified random sampling
- 123 non-cancer
- 27 cancer
- 10 radiologists

*Elmore et al., “Variability in Radiologists’ Interpretations of Mammograms,” NEJM, 1994
INTER-CLINICIAN VARIABILITY

- Large variability among clinicians
- Each clinician has their own operating point
INTER-CLINICIAN VARIABILITY

• What happens if we plot in ROC space?
 – Data fit well by an ROC curve

• For different readers:
 – Similar skill levels
 – Different threshold / operating points

*Elmore et al., “Variability in Radiologists’ Interpretations of Mammograms,” NEJM, 1994
OBSERVER STUDY WITH CAD

- Collect binary decisions from clinicians
- Collect ratings from clinicians and analyze with ROC

![ROC Curve Diagram]

- Sensitivity vs. FPF (1-Specificity)
- Unaided interpretation
- CAD aided interpretation
STATISTICAL INFERENCE

• To conclude that interpretation with CAD is better than without CAD
 – Performance measure difference
 – Standard deviation of performance measure difference

• AUC reduces variability by
 – Avoiding thresholds
 – Averaging

• Use of AUC helps increase study power
I WISH I HAD TIME TO COVER

- Location-specific ROC (FROC, LROC)
- Sources of variability
- MRMC studies
- Agreement measures
SUMMARY

• Both standalone and observer studies are essential to assess novel CAD systems

• Study design and data analysis for CAD system assessment
 – Important components:
 – Training and test databases, reference standard, scoring, observer study

• ROC is the preferred assessment methodology to collect and analyze data